Shortcuts

Generic Tools

Average Meter

class common.utils.meter.AverageMeter(name, fmt=':f')[source]

Computes and stores the average and current value.

Examples:

>>> # Initialize a meter to record loss
>>> losses = AverageMeter()
>>> # Update meter after every minibatch update
>>> losses.update(loss_value, batch_size)

Progress Meter

class common.utils.meter.ProgressMeter(num_batches, meters, prefix='')[source]

Meter

class common.utils.meter.Meter(name, fmt=':f')[source]

Computes and stores the current value.

Data

class common.utils.data.ForeverDataIterator(data_loader, device=None)[source]

A data iterator that will never stop producing data

class common.utils.data.CombineDataset(datasets)[source]

Dataset as a combination of multiple datasets. The element of each dataset must be a list, and the i-th element of the combined dataset is a list splicing of the i-th element of each sub dataset. The length of the combined dataset is the minimum of the lengths of all sub datasets.

Parameters

datasets (sequence) – List of datasets to be concatenated

common.utils.data.send_to_device(tensor, device)[source]

Recursively sends the elements in a nested list/tuple/dictionary of tensors to a given device.

Parameters
  • tensor (nested list/tuple/dictionary of torch.Tensor) – The data to send to a given device.

  • device (torch.device) – The device to send the data to

Returns

The same data structure as tensor with all tensors sent to the proper device.

common.utils.data.concatenate(tensors)[source]

concatenate multiple batches into one batch. tensors can be torch.Tensor, List or Dict, but they must be the same data format.

Logger

class common.utils.logger.TextLogger(filename, stream=<_io.TextIOWrapper name='<stdout>' mode='w' encoding='UTF-8'>)[source]

Writes stream output to external text file.

Parameters
  • filename (str) – the file to write stream output

  • stream – the stream to read from. Default: sys.stdout

class common.utils.logger.CompleteLogger(root, phase='train')[source]

A useful logger that

  • writes outputs to files and displays them on the console at the same time.

  • manages the directory of checkpoints and debugging images.

Parameters
  • root (str) – the root directory of logger

  • phase (str) – the phase of training.

get_checkpoint_path(name=None)[source]

Get the full checkpoint path.

Parameters

name (optional) – the filename (without file extension) to save checkpoint. If None, when the phase is train, checkpoint will be saved to {epoch}.pth. Otherwise, will be saved to {phase}.pth.

get_image_path(filename)[source]

Get the full image path for a specific filename

set_epoch(epoch)[source]

Set the epoch number. Please use it during training.

Docs

Access comprehensive documentation for Transfer Learning Library

View Docs

Tutorials

Get started for Transfer Learning Library

Get Started