Architecture Design¶
IBN-Net: Instance-Batch Normalization Network¶
-
class
common.vision.models.ibn.
IBN
(planes, ratio=0.5)[source]¶ Instance-Batch Normalization layer from Two at Once: Enhancing Learning and Generalization Capacities via IBN-Net (ECCV 2018).
Given input feature map \(f\_input\) of dimension \((C,H,W)\), we first split \(f\_input\) into two parts along channel dimension. They are denoted as \(f_1\) of dimension \((C_1,H,W)\) and \(f_2\) of dimension \((C_2,H,W)\), where \(C_1+C_2=C\). Then we pass \(f_1\) and \(f_2\) through IN and BN layer, respectively, to get \(IN(f_1)\) and \(BN(f_2)\). Last, we concat them along channel dimension to create \(f\_output=concat(IN(f_1), BN(f_2))\).
-
class
common.vision.models.ibn.
ResNet_IBN
(block, layers, ibn_cfg=('a', 'a', 'a', None))[source]¶ ResNets-IBN without fully connected layer
-
property
out_features
¶ The dimension of output features
-
property
Modified from https://github.com/XingangPan/IBN-Net @author: Baixu Chen @contact: cbx_99_hasta@outlook.com
-
common.vision.models.ibn.
resnet18_ibn_a
(pretrained=False)[source]¶ Constructs a ResNet-18-IBN-a model.
- Parameters
pretrained (bool) – If True, returns a model pre-trained on ImageNet
-
common.vision.models.ibn.
resnet18_ibn_b
(pretrained=False)[source]¶ Constructs a ResNet-18-IBN-b model.
- Parameters
pretrained (bool) – If True, returns a model pre-trained on ImageNet
-
common.vision.models.ibn.
resnet34_ibn_a
(pretrained=False)[source]¶ Constructs a ResNet-34-IBN-a model.
- Parameters
pretrained (bool) – If True, returns a model pre-trained on ImageNet
-
common.vision.models.ibn.
resnet34_ibn_b
(pretrained=False)[source]¶ Constructs a ResNet-34-IBN-b model.
- Parameters
pretrained (bool) – If True, returns a model pre-trained on ImageNet
-
common.vision.models.ibn.
resnet50_ibn_a
(pretrained=False)[source]¶ Constructs a ResNet-50-IBN-a model.
- Parameters
pretrained (bool) – If True, returns a model pre-trained on ImageNet
-
common.vision.models.ibn.
resnet50_ibn_b
(pretrained=False)[source]¶ Constructs a ResNet-50-IBN-b model.
- Parameters
pretrained (bool) – If True, returns a model pre-trained on ImageNet