Shortcuts

Source code for common.vision.models.ibn

"""
Modified from https://github.com/XingangPan/IBN-Net
@author: Baixu Chen
@contact: cbx_99_hasta@outlook.com
"""
import math
import torch
import torch.nn as nn

__all__ = ['resnet18_ibn_a', 'resnet18_ibn_b', 'resnet34_ibn_a', 'resnet34_ibn_b', 'resnet50_ibn_a', 'resnet50_ibn_b',
           'resnet101_ibn_a', 'resnet101_ibn_b']

model_urls = {
    'resnet18_ibn_a': 'https://github.com/XingangPan/IBN-Net/releases/download/v1.0/resnet18_ibn_a-2f571257.pth',
    'resnet34_ibn_a': 'https://github.com/XingangPan/IBN-Net/releases/download/v1.0/resnet34_ibn_a-94bc1577.pth',
    'resnet50_ibn_a': 'https://github.com/XingangPan/IBN-Net/releases/download/v1.0/resnet50_ibn_a-d9d0bb7b.pth',
    'resnet101_ibn_a': 'https://github.com/XingangPan/IBN-Net/releases/download/v1.0/resnet101_ibn_a-59ea0ac6.pth',
    'resnet18_ibn_b': 'https://github.com/XingangPan/IBN-Net/releases/download/v1.0/resnet18_ibn_b-bc2f3c11.pth',
    'resnet34_ibn_b': 'https://github.com/XingangPan/IBN-Net/releases/download/v1.0/resnet34_ibn_b-04134c37.pth',
    'resnet50_ibn_b': 'https://github.com/XingangPan/IBN-Net/releases/download/v1.0/resnet50_ibn_b-9ca61e85.pth',
    'resnet101_ibn_b': 'https://github.com/XingangPan/IBN-Net/releases/download/v1.0/resnet101_ibn_b-c55f6dba.pth',
}


[docs]class IBN(nn.Module): r"""Instance-Batch Normalization layer from `Two at Once: Enhancing Learning and Generalization Capacities via IBN-Net (ECCV 2018) <https://arxiv.org/pdf/1807.09441.pdf>`_. Given input feature map :math:`f\_input` of dimension :math:`(C,H,W)`, we first split :math:`f\_input` into two parts along `channel` dimension. They are denoted as :math:`f_1` of dimension :math:`(C_1,H,W)` and :math:`f_2` of dimension :math:`(C_2,H,W)`, where :math:`C_1+C_2=C`. Then we pass :math:`f_1` and :math:`f_2` through IN and BN layer, respectively, to get :math:`IN(f_1)` and :math:`BN(f_2)`. Last, we concat them along `channel` dimension to create :math:`f\_output=concat(IN(f_1), BN(f_2))`. Args: planes (int): Number of channels for the input tensor ratio (float): Ratio of instance normalization in the IBN layer """ def __init__(self, planes, ratio=0.5): super(IBN, self).__init__() self.half = int(planes * ratio) self.IN = nn.InstanceNorm2d(self.half, affine=True) self.BN = nn.BatchNorm2d(planes - self.half) def forward(self, x): split = torch.split(x, self.half, 1) out1 = self.IN(split[0].contiguous()) out2 = self.BN(split[1].contiguous()) out = torch.cat((out1, out2), 1) return out
class BasicBlock_IBN(nn.Module): expansion = 1 def __init__(self, inplanes, planes, ibn=None, stride=1, downsample=None): super(BasicBlock_IBN, self).__init__() self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=3, stride=stride, padding=1, bias=False) if ibn == 'a': self.bn1 = IBN(planes) else: self.bn1 = nn.BatchNorm2d(planes) self.relu = nn.ReLU(inplace=True) self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, padding=1, bias=False) self.bn2 = nn.BatchNorm2d(planes) self.IN = nn.InstanceNorm2d(planes, affine=True) if ibn == 'b' else None self.downsample = downsample self.stride = stride def forward(self, x): residual = x out = self.conv1(x) out = self.bn1(out) out = self.relu(out) out = self.conv2(out) out = self.bn2(out) if self.downsample is not None: residual = self.downsample(x) out += residual if self.IN is not None: out = self.IN(out) out = self.relu(out) return out class Bottleneck_IBN(nn.Module): expansion = 4 def __init__(self, inplanes, planes, ibn=None, stride=1, downsample=None): super(Bottleneck_IBN, self).__init__() self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=1, bias=False) if ibn == 'a': self.bn1 = IBN(planes) else: self.bn1 = nn.BatchNorm2d(planes) self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=stride, padding=1, bias=False) self.bn2 = nn.BatchNorm2d(planes) self.conv3 = nn.Conv2d(planes, planes * self.expansion, kernel_size=1, bias=False) self.bn3 = nn.BatchNorm2d(planes * self.expansion) self.IN = nn.InstanceNorm2d(planes * 4, affine=True) if ibn == 'b' else None self.relu = nn.ReLU(inplace=True) self.downsample = downsample self.stride = stride def forward(self, x): residual = x out = self.conv1(x) out = self.bn1(out) out = self.relu(out) out = self.conv2(out) out = self.bn2(out) out = self.relu(out) out = self.conv3(out) out = self.bn3(out) if self.downsample is not None: residual = self.downsample(x) out += residual if self.IN is not None: out = self.IN(out) out = self.relu(out) return out
[docs]class ResNet_IBN(nn.Module): r""" ResNets-IBN without fully connected layer """ def __init__(self, block, layers, ibn_cfg=('a', 'a', 'a', None)): self.inplanes = 64 super(ResNet_IBN, self).__init__() self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, bias=False) if ibn_cfg[0] == 'b': self.bn1 = nn.InstanceNorm2d(64, affine=True) else: self.bn1 = nn.BatchNorm2d(64) self.relu = nn.ReLU(inplace=True) self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) self.layer1 = self._make_layer(block, 64, layers[0], ibn=ibn_cfg[0]) self.layer2 = self._make_layer(block, 128, layers[1], stride=2, ibn=ibn_cfg[1]) self.layer3 = self._make_layer(block, 256, layers[2], stride=2, ibn=ibn_cfg[2]) self.layer4 = self._make_layer(block, 512, layers[3], stride=2, ibn=ibn_cfg[3]) self._out_features = 512 * block.expansion for m in self.modules(): if isinstance(m, nn.Conv2d): n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels m.weight.data.normal_(0, math.sqrt(2. / n)) elif isinstance(m, nn.BatchNorm2d) or isinstance(m, nn.InstanceNorm2d): m.weight.data.fill_(1) m.bias.data.zero_() def _make_layer(self, block, planes, blocks, stride=1, ibn=None): downsample = None if stride != 1 or self.inplanes != planes * block.expansion: downsample = nn.Sequential( nn.Conv2d(self.inplanes, planes * block.expansion, kernel_size=1, stride=stride, bias=False), nn.BatchNorm2d(planes * block.expansion), ) layers = [] layers.append(block(self.inplanes, planes, None if ibn == 'b' else ibn, stride, downsample)) self.inplanes = planes * block.expansion for i in range(1, blocks): layers.append(block(self.inplanes, planes, None if (ibn == 'b' and i < blocks - 1) else ibn)) return nn.Sequential(*layers) def forward(self, x): """""" x = self.conv1(x) x = self.bn1(x) x = self.relu(x) x = self.maxpool(x) x = self.layer1(x) x = self.layer2(x) x = self.layer3(x) x = self.layer4(x) return x @property def out_features(self) -> int: """The dimension of output features""" return self._out_features
[docs]def resnet18_ibn_a(pretrained=False): """Constructs a ResNet-18-IBN-a model. Args: pretrained (bool): If True, returns a model pre-trained on ImageNet """ model = ResNet_IBN(block=BasicBlock_IBN, layers=[2, 2, 2, 2], ibn_cfg=('a', 'a', 'a', None)) if pretrained: model.load_state_dict(torch.hub.load_state_dict_from_url(model_urls['resnet18_ibn_a']), strict=False) return model
[docs]def resnet34_ibn_a(pretrained=False): """Constructs a ResNet-34-IBN-a model. Args: pretrained (bool): If True, returns a model pre-trained on ImageNet """ model = ResNet_IBN(block=BasicBlock_IBN, layers=[3, 4, 6, 3], ibn_cfg=('a', 'a', 'a', None)) if pretrained: model.load_state_dict(torch.hub.load_state_dict_from_url(model_urls['resnet34_ibn_a']), strict=False) return model
[docs]def resnet50_ibn_a(pretrained=False): """Constructs a ResNet-50-IBN-a model. Args: pretrained (bool): If True, returns a model pre-trained on ImageNet """ model = ResNet_IBN(block=Bottleneck_IBN, layers=[3, 4, 6, 3], ibn_cfg=('a', 'a', 'a', None)) if pretrained: model.load_state_dict(torch.hub.load_state_dict_from_url(model_urls['resnet50_ibn_a']), strict=False) return model
[docs]def resnet101_ibn_a(pretrained=False): """Constructs a ResNet-101-IBN-a model. Args: pretrained (bool): If True, returns a model pre-trained on ImageNet """ model = ResNet_IBN(block=Bottleneck_IBN, layers=[3, 4, 23, 3], ibn_cfg=('a', 'a', 'a', None)) if pretrained: model.load_state_dict(torch.hub.load_state_dict_from_url(model_urls['resnet101_ibn_a']), strict=False) return model
[docs]def resnet18_ibn_b(pretrained=False): """Constructs a ResNet-18-IBN-b model. Args: pretrained (bool): If True, returns a model pre-trained on ImageNet """ model = ResNet_IBN(block=BasicBlock_IBN, layers=[2, 2, 2, 2], ibn_cfg=('b', 'b', None, None)) if pretrained: model.load_state_dict(torch.hub.load_state_dict_from_url(model_urls['resnet18_ibn_b']), strict=False) return model
[docs]def resnet34_ibn_b(pretrained=False): """Constructs a ResNet-34-IBN-b model. Args: pretrained (bool): If True, returns a model pre-trained on ImageNet """ model = ResNet_IBN(block=BasicBlock_IBN, layers=[3, 4, 6, 3], ibn_cfg=('b', 'b', None, None)) if pretrained: model.load_state_dict(torch.hub.load_state_dict_from_url(model_urls['resnet34_ibn_b']), strict=False) return model
[docs]def resnet50_ibn_b(pretrained=False): """Constructs a ResNet-50-IBN-b model. Args: pretrained (bool): If True, returns a model pre-trained on ImageNet """ model = ResNet_IBN(block=Bottleneck_IBN, layers=[3, 4, 6, 3], ibn_cfg=('b', 'b', None, None)) if pretrained: model.load_state_dict(torch.hub.load_state_dict_from_url(model_urls['resnet50_ibn_b']), strict=False) return model
[docs]def resnet101_ibn_b(pretrained=False): """Constructs a ResNet-101-IBN-b model. Args: pretrained (bool): If True, returns a model pre-trained on ImageNet """ model = ResNet_IBN(block=Bottleneck_IBN, layers=[3, 4, 23, 3], ibn_cfg=('b', 'b', None, None)) if pretrained: model.load_state_dict(torch.hub.load_state_dict_from_url(model_urls['resnet101_ibn_b']), strict=False) return model

Docs

Access comprehensive documentation for Transfer Learning Library

View Docs

Tutorials

Get started for Transfer Learning Library

Get Started