Maximum Classifier Discrepancy (MCD)¶
-
dalib.adaptation.mcd.
classifier_discrepancy
(predictions1, predictions2)[source]¶ The Classifier Discrepancy in Maximum Classifier Discrepancy for Unsupervised Domain Adaptation (CVPR 2018).
The classfier discrepancy between predictions \(p_1\) and \(p_2\) can be described as:
\[d(p_1, p_2) = \dfrac{1}{K} \sum_{k=1}^K | p_{1k} - p_{2k} |,\]where K is number of classes.
- Parameters
predictions1 (torch.Tensor) – Classifier predictions \(p_1\). Expected to contain raw, normalized scores for each class
predictions2 (torch.Tensor) – Classifier predictions \(p_2\)
-
dalib.adaptation.mcd.
entropy
(predictions)[source]¶ Entropy of N predictions \((p_1, p_2, ..., p_N)\). The definition is:
\[d(p_1, p_2, ..., p_N) = -\dfrac{1}{K} \sum_{k=1}^K \log \left( \dfrac{1}{N} \sum_{i=1}^N p_{ik} \right)\]where K is number of classes.
Note
This entropy function is specifically used in MCD and different from the usual
entropy()
function.- Parameters
predictions (torch.Tensor) – Classifier predictions. Expected to contain raw, normalized scores for each class