Source code for dalib.adaptation.mcd
"""
@author: Junguang Jiang
@contact: JiangJunguang1123@outlook.com
"""
from typing import Optional
import torch.nn as nn
import torch
[docs]def classifier_discrepancy(predictions1: torch.Tensor, predictions2: torch.Tensor) -> torch.Tensor:
r"""The `Classifier Discrepancy` in
`Maximum Classifier Discrepancy for Unsupervised Domain Adaptation (CVPR 2018) <https://arxiv.org/abs/1712.02560>`_.
The classfier discrepancy between predictions :math:`p_1` and :math:`p_2` can be described as:
.. math::
d(p_1, p_2) = \dfrac{1}{K} \sum_{k=1}^K | p_{1k} - p_{2k} |,
where K is number of classes.
Args:
predictions1 (torch.Tensor): Classifier predictions :math:`p_1`. Expected to contain raw, normalized scores for each class
predictions2 (torch.Tensor): Classifier predictions :math:`p_2`
"""
return torch.mean(torch.abs(predictions1 - predictions2))
[docs]def entropy(predictions: torch.Tensor) -> torch.Tensor:
r"""Entropy of N predictions :math:`(p_1, p_2, ..., p_N)`.
The definition is:
.. math::
d(p_1, p_2, ..., p_N) = -\dfrac{1}{K} \sum_{k=1}^K \log \left( \dfrac{1}{N} \sum_{i=1}^N p_{ik} \right)
where K is number of classes.
.. note::
This entropy function is specifically used in MCD and different from the usual :meth:`~dalib.modules.entropy.entropy` function.
Args:
predictions (torch.Tensor): Classifier predictions. Expected to contain raw, normalized scores for each class
"""
return -torch.mean(torch.log(torch.mean(predictions, 0) + 1e-6))
[docs]class ImageClassifierHead(nn.Module):
r"""Classifier Head for MCD.
Args:
in_features (int): Dimension of input features
num_classes (int): Number of classes
bottleneck_dim (int, optional): Feature dimension of the bottleneck layer. Default: 1024
Shape:
- Inputs: :math:`(minibatch, F)` where F = `in_features`.
- Output: :math:`(minibatch, C)` where C = `num_classes`.
"""
def __init__(self, in_features: int, num_classes: int, bottleneck_dim: Optional[int] = 1024, pool_layer=None):
super(ImageClassifierHead, self).__init__()
self.num_classes = num_classes
if pool_layer is None:
self.pool_layer = nn.Sequential(
nn.AdaptiveAvgPool2d(output_size=(1, 1)),
nn.Flatten()
)
else:
self.pool_layer = pool_layer
self.head = nn.Sequential(
nn.Dropout(0.5),
nn.Linear(in_features, bottleneck_dim),
nn.BatchNorm1d(bottleneck_dim),
nn.ReLU(),
nn.Dropout(0.5),
nn.Linear(bottleneck_dim, bottleneck_dim),
nn.BatchNorm1d(bottleneck_dim),
nn.ReLU(),
nn.Linear(bottleneck_dim, num_classes)
)
def forward(self, inputs: torch.Tensor) -> torch.Tensor:
return self.head(self.pool_layer(inputs))