Source code for common.modules.classifier
"""
@author: Junguang Jiang
@contact: JiangJunguang1123@outlook.com
"""
from typing import Tuple, Optional, List, Dict
import torch.nn as nn
import torch
__all__ = ['Classifier']
[docs]class Classifier(nn.Module):
"""A generic Classifier class for domain adaptation.
Args:
backbone (torch.nn.Module): Any backbone to extract 2-d features from data
num_classes (int): Number of classes
bottleneck (torch.nn.Module, optional): Any bottleneck layer. Use no bottleneck by default
bottleneck_dim (int, optional): Feature dimension of the bottleneck layer. Default: -1
head (torch.nn.Module, optional): Any classifier head. Use :class:`torch.nn.Linear` by default
finetune (bool): Whether finetune the classifier or train from scratch. Default: True
.. note::
Different classifiers are used in different domain adaptation algorithms to achieve better accuracy
respectively, and we provide a suggested `Classifier` for different algorithms.
Remember they are not the core of algorithms. You can implement your own `Classifier` and combine it with
the domain adaptation algorithm in this algorithm library.
.. note::
The learning rate of this classifier is set 10 times to that of the feature extractor for better accuracy
by default. If you have other optimization strategies, please over-ride :meth:`~Classifier.get_parameters`.
Inputs:
- x (tensor): input data fed to `backbone`
Outputs:
- predictions: classifier's predictions
- features: features after `bottleneck` layer and before `head` layer
Shape:
- Inputs: (minibatch, *) where * means, any number of additional dimensions
- predictions: (minibatch, `num_classes`)
- features: (minibatch, `features_dim`)
"""
def __init__(self, backbone: nn.Module, num_classes: int, bottleneck: Optional[nn.Module] = None,
bottleneck_dim: Optional[int] = -1, head: Optional[nn.Module] = None, finetune=True, pool_layer=None):
super(Classifier, self).__init__()
self.backbone = backbone
self.num_classes = num_classes
if pool_layer is None:
self.pool_layer = nn.Sequential(
nn.AdaptiveAvgPool2d(output_size=(1, 1)),
nn.Flatten()
)
else:
self.pool_layer = pool_layer
if bottleneck is None:
self.bottleneck = nn.Identity()
self._features_dim = backbone.out_features
else:
self.bottleneck = bottleneck
assert bottleneck_dim > 0
self._features_dim = bottleneck_dim
if head is None:
self.head = nn.Linear(self._features_dim, num_classes)
else:
self.head = head
self.finetune = finetune
@property
def features_dim(self) -> int:
"""The dimension of features before the final `head` layer"""
return self._features_dim
def forward(self, x: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
""""""
f = self.pool_layer(self.backbone(x))
f = self.bottleneck(f)
predictions = self.head(f)
if self.training:
return predictions, f
else:
return predictions
[docs] def get_parameters(self, base_lr=1.0) -> List[Dict]:
"""A parameter list which decides optimization hyper-parameters,
such as the relative learning rate of each layer
"""
params = [
{"params": self.backbone.parameters(), "lr": 0.1 * base_lr if self.finetune else 1.0 * base_lr},
{"params": self.bottleneck.parameters(), "lr": 1.0 * base_lr},
{"params": self.head.parameters(), "lr": 1.0 * base_lr},
]
return params
class ImageClassifier(Classifier):
pass