Shortcuts

Source code for common.modules.classifier

"""
@author: Junguang Jiang
@contact: JiangJunguang1123@outlook.com
"""
from typing import Tuple, Optional, List, Dict
import torch.nn as nn
import torch

__all__ = ['Classifier']


[docs]class Classifier(nn.Module): """A generic Classifier class for domain adaptation. Args: backbone (torch.nn.Module): Any backbone to extract 2-d features from data num_classes (int): Number of classes bottleneck (torch.nn.Module, optional): Any bottleneck layer. Use no bottleneck by default bottleneck_dim (int, optional): Feature dimension of the bottleneck layer. Default: -1 head (torch.nn.Module, optional): Any classifier head. Use :class:`torch.nn.Linear` by default finetune (bool): Whether finetune the classifier or train from scratch. Default: True .. note:: Different classifiers are used in different domain adaptation algorithms to achieve better accuracy respectively, and we provide a suggested `Classifier` for different algorithms. Remember they are not the core of algorithms. You can implement your own `Classifier` and combine it with the domain adaptation algorithm in this algorithm library. .. note:: The learning rate of this classifier is set 10 times to that of the feature extractor for better accuracy by default. If you have other optimization strategies, please over-ride :meth:`~Classifier.get_parameters`. Inputs: - x (tensor): input data fed to `backbone` Outputs: - predictions: classifier's predictions - features: features after `bottleneck` layer and before `head` layer Shape: - Inputs: (minibatch, *) where * means, any number of additional dimensions - predictions: (minibatch, `num_classes`) - features: (minibatch, `features_dim`) """ def __init__(self, backbone: nn.Module, num_classes: int, bottleneck: Optional[nn.Module] = None, bottleneck_dim: Optional[int] = -1, head: Optional[nn.Module] = None, finetune=True, pool_layer=None): super(Classifier, self).__init__() self.backbone = backbone self.num_classes = num_classes if pool_layer is None: self.pool_layer = nn.Sequential( nn.AdaptiveAvgPool2d(output_size=(1, 1)), nn.Flatten() ) else: self.pool_layer = pool_layer if bottleneck is None: self.bottleneck = nn.Identity() self._features_dim = backbone.out_features else: self.bottleneck = bottleneck assert bottleneck_dim > 0 self._features_dim = bottleneck_dim if head is None: self.head = nn.Linear(self._features_dim, num_classes) else: self.head = head self.finetune = finetune @property def features_dim(self) -> int: """The dimension of features before the final `head` layer""" return self._features_dim def forward(self, x: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]: """""" f = self.pool_layer(self.backbone(x)) f = self.bottleneck(f) predictions = self.head(f) if self.training: return predictions, f else: return predictions
[docs] def get_parameters(self, base_lr=1.0) -> List[Dict]: """A parameter list which decides optimization hyper-parameters, such as the relative learning rate of each layer """ params = [ {"params": self.backbone.parameters(), "lr": 0.1 * base_lr if self.finetune else 1.0 * base_lr}, {"params": self.bottleneck.parameters(), "lr": 1.0 * base_lr}, {"params": self.head.parameters(), "lr": 1.0 * base_lr}, ] return params
class ImageClassifier(Classifier): pass

Docs

Access comprehensive documentation for Transfer Learning Library

View Docs

Tutorials

Get started for Transfer Learning Library

Get Started