Source code for common.vision.datasets.digits
"""
@author: Junguang Jiang, Baixu Chen
@contact: JiangJunguang1123@outlook.com, cbx_99_hasta@outlook.com
"""
import os
from typing import Optional, Tuple, Any
from .imagelist import ImageList
from ._util import download as download_data, check_exits
[docs]class MNIST(ImageList):
"""`MNIST <http://yann.lecun.com/exdb/mnist/>`_ Dataset.
Args:
root (str): Root directory of dataset where ``MNIST/processed/training.pt``
and ``MNIST/processed/test.pt`` exist.
mode (str): The channel mode for image. Choices includes ``"L"```, ``"RGB"``.
Default: ``"L"```
split (str, optional): The dataset split, supports ``train``, or ``test``.
download (bool, optional): If true, downloads the dataset from the internet and
puts it in root directory. If dataset is already downloaded, it is not
downloaded again.
transform (callable, optional): A function/transform that takes in an PIL image
and returns a transformed version. E.g, ``transforms.RandomCrop``
"""
download_list = [
("image_list", "image_list.zip", "https://cloud.tsinghua.edu.cn/f/f18f1e115de94644b900/?dl=1"),
("mnist_train_image", "mnist_image.tar.gz", "https://cloud.tsinghua.edu.cn/f/fdf45c75d2e746acba93/?dl=1"),
# ("mnist_test_image", "mnist_image.tar.gz", "https://cloud.tsinghua.edu.cn/f/fdf45c75d2e746acba93/?dl=1")
]
image_list = {
"train": "image_list/mnist_train.txt",
"test": "image_list/mnist_test.txt"
}
CLASSES = ['0 - zero', '1 - one', '2 - two', '3 - three', '4 - four',
'5 - five', '6 - six', '7 - seven', '8 - eight', '9 - nine']
def __init__(self, root, mode="L", split='train', download: Optional[bool] = True, **kwargs):
assert split in ['train', 'test']
data_list_file = os.path.join(root, self.image_list[split])
if download:
list(map(lambda args: download_data(root, *args), self.download_list))
else:
list(map(lambda file_name, _: check_exits(root, file_name), self.download_list))
assert mode in ['L', 'RGB']
self.mode = mode
super(MNIST, self).__init__(root, MNIST.CLASSES, data_list_file=data_list_file, **kwargs)
def __getitem__(self, index: int) -> Tuple[Any, int]:
"""
Args:
index (int): Index
return (tuple): (image, target) where target is index of the target class.
"""
path, target = self.samples[index]
img = self.loader(path).convert(self.mode)
if self.transform is not None:
img = self.transform(img)
if self.target_transform is not None and target is not None:
target = self.target_transform(target)
return img, target
@classmethod
def get_classes(self):
return MNIST.CLASSES
[docs]class USPS(ImageList):
"""`USPS <https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/multiclass.html#usps>`_ Dataset.
The data-format is : [label [index:value ]*256 \\n] * num_lines, where ``label`` lies in ``[1, 10]``.
The value for each pixel lies in ``[-1, 1]``. Here we transform the ``label`` into ``[0, 9]``
and make pixel values in ``[0, 255]``.
Args:
root (str): Root directory of dataset to store``USPS`` data files.
mode (str): The channel mode for image. Choices includes ``"L"```, ``"RGB"``.
Default: ``"L"```
split (str, optional): The dataset split, supports ``train``, or ``test``.
transform (callable, optional): A function/transform that takes in an PIL image
and returns a transformed version. E.g, ``transforms.RandomCrop``
download (bool, optional): If true, downloads the dataset from the internet and
puts it in root directory. If dataset is already downloaded, it is not
downloaded again.
"""
download_list = [
("image_list", "image_list.zip", "https://cloud.tsinghua.edu.cn/f/10ddb319c24e40a08e58/?dl=1"),
("usps_train_image", "usps_image.tar.gz", "https://cloud.tsinghua.edu.cn/f/1d3d7e2540bd4392b715/?dl=1"),
# ("usps_test_image", "usps_image.tar.gz", "https://cloud.tsinghua.edu.cn/f/1d3d7e2540bd4392b715/?dl=1")
]
image_list = {
"train": "image_list/usps_train.txt",
"test": "image_list/usps_test.txt"
}
CLASSES = ['0 - zero', '1 - one', '2 - two', '3 - three', '4 - four',
'5 - five', '6 - six', '7 - seven', '8 - eight', '9 - nine']
def __init__(self, root, mode="L", split='train', download: Optional[bool] = True, **kwargs):
assert split in ['train', 'test']
data_list_file = os.path.join(root, self.image_list[split])
if download:
list(map(lambda args: download_data(root, *args), self.download_list))
else:
list(map(lambda file_name, _: check_exits(root, file_name), self.download_list))
assert mode in ['L', 'RGB']
self.mode = mode
super(USPS, self).__init__(root, USPS.CLASSES, data_list_file=data_list_file, **kwargs)
def __getitem__(self, index: int) -> Tuple[Any, int]:
"""
Args:
index (int): Index
return (tuple): (image, target) where target is index of the target class.
"""
path, target = self.samples[index]
img = self.loader(path).convert(self.mode)
if self.transform is not None:
img = self.transform(img)
if self.target_transform is not None and target is not None:
target = self.target_transform(target)
return img, target
[docs]class SVHN(ImageList):
"""`SVHN <http://ufldl.stanford.edu/housenumbers/>`_ Dataset.
Note: The SVHN dataset assigns the label `10` to the digit `0`. However, in this Dataset,
we assign the label `0` to the digit `0` to be compatible with PyTorch loss functions which
expect the class labels to be in the range `[0, C-1]`
.. warning::
This class needs `scipy <https://docs.scipy.org/doc/>`_ to load data from `.mat` format.
Args:
root (str): Root directory of dataset where directory
``SVHN`` exists.
mode (str): The channel mode for image. Choices includes ``"L"```, ``"RGB"``.
Default: ``"RGB"```
split (str, optional): The dataset split, supports ``train``, or ``test``.
transform (callable, optional): A function/transform that takes in an PIL image
and returns a transformed version. E.g, ``transforms.RandomCrop``
download (bool, optional): If true, downloads the dataset from the internet and
puts it in root directory. If dataset is already downloaded, it is not
downloaded again.
"""
download_list = [
("image_list", "image_list.zip", "https://cloud.tsinghua.edu.cn/f/80a8a06c4a324c59a5e4/?dl=1"),
("svhn_image", "svhn_image.tar.gz", "https://cloud.tsinghua.edu.cn/f/0e48a871e00345eb91a9/?dl=1")
]
image_list = "image_list/svhn_balanced.txt"
# image_list = "image_list/svhn.txt"
CLASSES = ['0 - zero', '1 - one', '2 - two', '3 - three', '4 - four',
'5 - five', '6 - six', '7 - seven', '8 - eight', '9 - nine']
def __init__(self, root, mode="L", download: Optional[bool] = True, **kwargs):
data_list_file = os.path.join(root, self.image_list)
if download:
list(map(lambda args: download_data(root, *args), self.download_list))
else:
list(map(lambda file_name, _: check_exits(root, file_name), self.download_list))
assert mode in ['L', 'RGB']
self.mode = mode
super(SVHN, self).__init__(root, SVHN.CLASSES, data_list_file=data_list_file, **kwargs)
def __getitem__(self, index: int) -> Tuple[Any, int]:
"""
Args:
index (int): Index
return (tuple): (image, target) where target is index of the target class.
"""
path, target = self.samples[index]
img = self.loader(path).convert(self.mode)
if self.transform is not None:
img = self.transform(img)
if self.target_transform is not None and target is not None:
target = self.target_transform(target)
return img, target
class MNISTRGB(MNIST):
def __init__(self, root, **kwargs):
super(MNISTRGB, self).__init__(root, mode='RGB', **kwargs)
class USPSRGB(USPS):
def __init__(self, root, **kwargs):
super(USPSRGB, self).__init__(root, mode='RGB', **kwargs)
class SVHNRGB(SVHN):
def __init__(self, root, **kwargs):
super(SVHNRGB, self).__init__(root, mode='RGB', **kwargs)