Source code for common.vision.transforms
import math
import random
from PIL import Image
import numpy as np
import torch
from torchvision.transforms import Normalize
[docs]class ResizeImage(object):
    """Resize the input PIL Image to the given size.
    Args:
        size (sequence or int): Desired output size. If size is a sequence like
          (h, w), output size will be matched to this. If size is an int,
          output size will be (size, size)
    """
    def __init__(self, size):
        if isinstance(size, int):
            self.size = (int(size), int(size))
        else:
            self.size = size
    def __call__(self, img):
        th, tw = self.size
        return img.resize((th, tw))
    def __repr__(self):
        return self.__class__.__name__ + '(size={0})'.format(self.size)
[docs]class MultipleApply:
    """Apply a list of transformations to an image and get multiple transformed images.
    Args:
        transforms (list or tuple): list of transformations
    Example:
        
        >>> transform1 = T.Compose([
        ...     ResizeImage(256),
        ...     T.RandomCrop(224)
        ... ])
        >>> transform2 = T.Compose([
        ...     ResizeImage(256),
        ...     T.RandomCrop(224),
        ... ])
        >>> multiply_transform = MultipleApply([transform1, transform2])
    """
    def __init__(self, transforms):
        self.transforms = transforms
    def __call__(self, image):
        return [t(image) for t in self.transforms]
    def __repr__(self):
        format_string = self.__class__.__name__ + '('
        for t in self.transforms:
            format_string += '\n'
            format_string += '    {0}'.format(t)
        format_string += '\n)'
        return format_string
[docs]class Denormalize(Normalize):
    """DeNormalize a tensor image with mean and standard deviation.
    Given mean: ``(mean[1],...,mean[n])`` and std: ``(std[1],..,std[n])`` for ``n``
    channels, this transform will denormalize each channel of the input
    ``torch.*Tensor`` i.e.,
    ``output[channel] = input[channel] * std[channel] + mean[channel]``
    .. note::
        This transform acts out of place, i.e., it does not mutate the input tensor.
    Args:
        mean (sequence): Sequence of means for each channel.
        std (sequence): Sequence of standard deviations for each channel.
    """
    def __init__(self, mean, std):
        mean = np.array(mean)
        std = np.array(std)
        super().__init__((-mean / std).tolist(), (1 / std).tolist())
[docs]class NormalizeAndTranspose:
    """
    First, normalize a tensor image with mean and standard deviation.
    Then, convert the shape (H x W x C) to shape (C x H x W).
    """
    def __init__(self, mean=(104.00698793, 116.66876762, 122.67891434)):
        self.mean = np.array(mean, dtype=np.float32)
    def __call__(self, image):
        if isinstance(image, Image.Image):
            image = np.asarray(image, np.float32)
            # change to BGR
            image = image[:, :, ::-1]
            # normalize
            image -= self.mean
            image = image.transpose((2, 0, 1)).copy()
        elif isinstance(image, torch.Tensor):
            # change to BGR
            image = image[:, :, [2, 1, 0]]
            # normalize
            image -= torch.from_numpy(self.mean).to(image.device)
            image = image.permute((2, 0, 1))
        else:
            raise NotImplementedError(type(image))
        return image
[docs]class DeNormalizeAndTranspose:
    """
    First, convert a tensor image from the shape (C x H x W ) to shape (H x W x C).
    Then, denormalize it with mean and standard deviation.
    """
    def __init__(self, mean=(104.00698793, 116.66876762, 122.67891434)):
        self.mean = np.array(mean, dtype=np.float32)
    def __call__(self, image):
        image = image.transpose((1, 2, 0))
        # denormalize
        image += self.mean
        # change to RGB
        image = image[:, :, ::-1]
        return image
[docs]class RandomErasing(object):
    """Random erasing augmentation from `Random Erasing Data Augmentation (CVPR 2017)
    <https://arxiv.org/pdf/1708.04896.pdf>`_. This augmentation randomly selects a rectangle region in an image
    and erases its pixels.
    Args:
         probability (float): The probability that the Random Erasing operation will be performed.
         sl (float): Minimum proportion of erased area against input image.
         sh (float): Maximum proportion of erased area against input image.
         r1 (float): Minimum aspect ratio of erased area.
         mean (sequence): Value to fill the erased area.
    """
    def __init__(self, probability=0.5, sl=0.02, sh=0.4, r1=0.3, mean=(0.4914, 0.4822, 0.4465)):
        self.probability = probability
        self.mean = mean
        self.sl = sl
        self.sh = sh
        self.r1 = r1
    def __call__(self, img):
        if random.uniform(0, 1) >= self.probability:
            return img
        for attempt in range(100):
            area = img.size()[1] * img.size()[2]
            target_area = random.uniform(self.sl, self.sh) * area
            aspect_ratio = random.uniform(self.r1, 1 / self.r1)
            h = int(round(math.sqrt(target_area * aspect_ratio)))
            w = int(round(math.sqrt(target_area / aspect_ratio)))
            if w < img.size()[2] and h < img.size()[1]:
                x1 = random.randint(0, img.size()[1] - h)
                y1 = random.randint(0, img.size()[2] - w)
                if img.size()[0] == 3:
                    img[0, x1:x1 + h, y1:y1 + w] = self.mean[0]
                    img[1, x1:x1 + h, y1:y1 + w] = self.mean[1]
                    img[2, x1:x1 + h, y1:y1 + w] = self.mean[2]
                else:
                    img[0, x1:x1 + h, y1:y1 + w] = self.mean[0]
                return img
        return img
    def __repr__(self):
        return self.__class__.__name__ + '(p={})'.format(self.probability)