Shortcuts

Source code for dalib.adaptation.cdan

"""
@author: Junguang Jiang
@contact: JiangJunguang1123@outlook.com
"""
from typing import Optional
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F

from common.modules.classifier import Classifier as ClassifierBase
from common.utils.metric import binary_accuracy
from ..modules.grl import WarmStartGradientReverseLayer
from ..modules.entropy import entropy


__all__ = ['ConditionalDomainAdversarialLoss', 'ImageClassifier']


[docs]class ConditionalDomainAdversarialLoss(nn.Module): r"""The Conditional Domain Adversarial Loss used in `Conditional Adversarial Domain Adaptation (NIPS 2018) <https://arxiv.org/abs/1705.10667>`_ Conditional Domain adversarial loss measures the domain discrepancy through training a domain discriminator in a conditional manner. Given domain discriminator :math:`D`, feature representation :math:`f` and classifier predictions :math:`g`, the definition of CDAN loss is .. math:: loss(\mathcal{D}_s, \mathcal{D}_t) &= \mathbb{E}_{x_i^s \sim \mathcal{D}_s} \text{log}[D(T(f_i^s, g_i^s))] \\ &+ \mathbb{E}_{x_j^t \sim \mathcal{D}_t} \text{log}[1-D(T(f_j^t, g_j^t))],\\ where :math:`T` is a :class:`MultiLinearMap` or :class:`RandomizedMultiLinearMap` which convert two tensors to a single tensor. Args: domain_discriminator (torch.nn.Module): A domain discriminator object, which predicts the domains of features. Its input shape is (N, F) and output shape is (N, 1) entropy_conditioning (bool, optional): If True, use entropy-aware weight to reweight each training example. Default: False randomized (bool, optional): If True, use `randomized multi linear map`. Else, use `multi linear map`. Default: False num_classes (int, optional): Number of classes. Default: -1 features_dim (int, optional): Dimension of input features. Default: -1 randomized_dim (int, optional): Dimension of features after randomized. Default: 1024 reduction (str, optional): Specifies the reduction to apply to the output: ``'none'`` | ``'mean'`` | ``'sum'``. ``'none'``: no reduction will be applied, ``'mean'``: the sum of the output will be divided by the number of elements in the output, ``'sum'``: the output will be summed. Default: ``'mean'`` .. note:: You need to provide `num_classes`, `features_dim` and `randomized_dim` **only when** `randomized` is set True. Inputs: - g_s (tensor): unnormalized classifier predictions on source domain, :math:`g^s` - f_s (tensor): feature representations on source domain, :math:`f^s` - g_t (tensor): unnormalized classifier predictions on target domain, :math:`g^t` - f_t (tensor): feature representations on target domain, :math:`f^t` Shape: - g_s, g_t: :math:`(minibatch, C)` where C means the number of classes. - f_s, f_t: :math:`(minibatch, F)` where F means the dimension of input features. - Output: scalar by default. If :attr:`reduction` is ``'none'``, then :math:`(minibatch, )`. Examples:: >>> from dalib.modules.domain_discriminator import DomainDiscriminator >>> from dalib.adaptation.cdan import ConditionalDomainAdversarialLoss >>> import torch >>> num_classes = 2 >>> feature_dim = 1024 >>> batch_size = 10 >>> discriminator = DomainDiscriminator(in_feature=feature_dim * num_classes, hidden_size=1024) >>> loss = ConditionalDomainAdversarialLoss(discriminator, reduction='mean') >>> # features from source domain and target domain >>> f_s, f_t = torch.randn(batch_size, feature_dim), torch.randn(batch_size, feature_dim) >>> # logits output from source domain adn target domain >>> g_s, g_t = torch.randn(batch_size, num_classes), torch.randn(batch_size, num_classes) >>> output = loss(g_s, f_s, g_t, f_t) """ def __init__(self, domain_discriminator: nn.Module, entropy_conditioning: Optional[bool] = False, randomized: Optional[bool] = False, num_classes: Optional[int] = -1, features_dim: Optional[int] = -1, randomized_dim: Optional[int] = 1024, reduction: Optional[str] = 'mean'): super(ConditionalDomainAdversarialLoss, self).__init__() self.domain_discriminator = domain_discriminator self.grl = WarmStartGradientReverseLayer(alpha=1., lo=0., hi=1., max_iters=1000, auto_step=True) self.entropy_conditioning = entropy_conditioning if randomized: assert num_classes > 0 and features_dim > 0 and randomized_dim > 0 self.map = RandomizedMultiLinearMap(features_dim, num_classes, randomized_dim) else: self.map = MultiLinearMap() self.bce = lambda input, target, weight: F.binary_cross_entropy(input, target, weight, reduction=reduction) if self.entropy_conditioning \ else F.binary_cross_entropy(input, target, reduction=reduction) self.domain_discriminator_accuracy = None def forward(self, g_s: torch.Tensor, f_s: torch.Tensor, g_t: torch.Tensor, f_t: torch.Tensor) -> torch.Tensor: f = torch.cat((f_s, f_t), dim=0) g = torch.cat((g_s, g_t), dim=0) g = F.softmax(g, dim=1).detach() h = self.grl(self.map(f, g)) d = self.domain_discriminator(h) d_label = torch.cat(( torch.ones((g_s.size(0), 1)).to(g_s.device), torch.zeros((g_t.size(0), 1)).to(g_t.device), )) weight = 1.0 + torch.exp(-entropy(g)) batch_size = f.size(0) weight = weight / torch.sum(weight) * batch_size self.domain_discriminator_accuracy = binary_accuracy(d, d_label) return self.bce(d, d_label, weight.view_as(d))
[docs]class RandomizedMultiLinearMap(nn.Module): """Random multi linear map Given two inputs :math:`f` and :math:`g`, the definition is .. math:: T_{\odot}(f,g) = \dfrac{1}{\sqrt{d}} (R_f f) \odot (R_g g), where :math:`\odot` is element-wise product, :math:`R_f` and :math:`R_g` are random matrices sampled only once and fixed in training. Args: features_dim (int): dimension of input :math:`f` num_classes (int): dimension of input :math:`g` output_dim (int, optional): dimension of output tensor. Default: 1024 Shape: - f: (minibatch, features_dim) - g: (minibatch, num_classes) - Outputs: (minibatch, output_dim) """ def __init__(self, features_dim: int, num_classes: int, output_dim: Optional[int] = 1024): super(RandomizedMultiLinearMap, self).__init__() self.Rf = torch.randn(features_dim, output_dim) self.Rg = torch.randn(num_classes, output_dim) self.output_dim = output_dim def forward(self, f: torch.Tensor, g: torch.Tensor) -> torch.Tensor: f = torch.mm(f, self.Rf.to(f.device)) g = torch.mm(g, self.Rg.to(g.device)) output = torch.mul(f, g) / np.sqrt(float(self.output_dim)) return output
[docs]class MultiLinearMap(nn.Module): """Multi linear map Shape: - f: (minibatch, F) - g: (minibatch, C) - Outputs: (minibatch, F * C) """ def __init__(self): super(MultiLinearMap, self).__init__() def forward(self, f: torch.Tensor, g: torch.Tensor) -> torch.Tensor: batch_size = f.size(0) output = torch.bmm(g.unsqueeze(2), f.unsqueeze(1)) return output.view(batch_size, -1)
class ImageClassifier(ClassifierBase): def __init__(self, backbone: nn.Module, num_classes: int, bottleneck_dim: Optional[int] = 256, **kwargs): bottleneck = nn.Sequential( # nn.AdaptiveAvgPool2d(output_size=(1, 1)), # nn.Flatten(), nn.Linear(backbone.out_features, bottleneck_dim), nn.BatchNorm1d(bottleneck_dim), nn.ReLU() ) super(ImageClassifier, self).__init__(backbone, num_classes, bottleneck, bottleneck_dim, **kwargs)

Docs

Access comprehensive documentation for Transfer Learning Library

View Docs

Tutorials

Get started for Transfer Learning Library

Get Started