Shortcuts

Source code for dalib.adaptation.mcc

"""
@author: Ying Jin
@contact: sherryying003@gmail.com
"""
from typing import Optional
import torch
import torch.nn as nn
import torch.nn.functional as F

from common.modules.classifier import Classifier as ClassifierBase
from ..modules.entropy import entropy


__all__ = ['MinimumClassConfusionLoss', 'ImageClassifier']


[docs]class MinimumClassConfusionLoss(nn.Module): r""" Minimum Class Confusion loss minimizes the class confusion in the target predictions. You can see more details in `Minimum Class Confusion for Versatile Domain Adaptation (ECCV 2020) <https://arxiv.org/abs/1912.03699>`_ Args: temperature (float) : The temperature for rescaling, the prediction will shrink to vanilla softmax if temperature is 1.0. .. note:: Make sure that temperature is larger than 0. Inputs: g_t - g_t (tensor): unnormalized classifier predictions on target domain, :math:`g^t` Shape: - g_t: :math:`(minibatch, C)` where C means the number of classes. - Output: scalar. Examples:: >>> temperature = 2.0 >>> loss = MinimumClassConfusionLoss(temperature) >>> # logits output from target domain >>> g_t = torch.randn(batch_size, num_classes) >>> output = loss(g_t) MCC can also serve as a regularizer for existing methods. Examples:: >>> from dalib.modules.domain_discriminator import DomainDiscriminator >>> num_classes = 2 >>> feature_dim = 1024 >>> batch_size = 10 >>> temperature = 2.0 >>> discriminator = DomainDiscriminator(in_feature=feature_dim, hidden_size=1024) >>> cdan_loss = ConditionalDomainAdversarialLoss(discriminator, reduction='mean') >>> mcc_loss = MinimumClassConfusionLoss(temperature) >>> # features from source domain and target domain >>> f_s, f_t = torch.randn(batch_size, feature_dim), torch.randn(batch_size, feature_dim) >>> # logits output from source domain adn target domain >>> g_s, g_t = torch.randn(batch_size, num_classes), torch.randn(batch_size, num_classes) >>> total_loss = cdan_loss(g_s, f_s, g_t, f_t) + mcc_loss(g_t) """ def __init__(self, temperature: float): super(MinimumClassConfusionLoss, self).__init__() self.temperature = temperature def forward(self, logits: torch.Tensor) -> torch.Tensor: batch_size, num_classes = logits.shape predictions = F.softmax(logits / self.temperature, dim=1) # batch_size x num_classes entropy_weight = entropy(predictions).detach() entropy_weight = 1 + torch.exp(-entropy_weight) entropy_weight = (batch_size * entropy_weight / torch.sum(entropy_weight)).unsqueeze(dim=1) # batch_size x 1 class_confusion_matrix = torch.mm((predictions * entropy_weight).transpose(1, 0), predictions) # num_classes x num_classes class_confusion_matrix = class_confusion_matrix / torch.sum(class_confusion_matrix, dim=1) mcc_loss = (torch.sum(class_confusion_matrix) - torch.trace(class_confusion_matrix)) / num_classes return mcc_loss
class ImageClassifier(ClassifierBase): def __init__(self, backbone: nn.Module, num_classes: int, bottleneck_dim: Optional[int] = 256, **kwargs): bottleneck = nn.Sequential( # nn.AdaptiveAvgPool2d(output_size=(1, 1)), # nn.Flatten(), nn.Linear(backbone.out_features, bottleneck_dim), nn.BatchNorm1d(bottleneck_dim), nn.ReLU() ) super(ImageClassifier, self).__init__(backbone, num_classes, bottleneck, bottleneck_dim, **kwargs)

Docs

Access comprehensive documentation for Transfer Learning Library

View Docs

Tutorials

Get started for Transfer Learning Library

Get Started