Source code for dalib.adaptation.rsd
"""
@author: Junguang Jiang
@contact: JiangJunguang1123@outlook.com
"""
import torch.nn as nn
import torch
[docs]class RepresentationSubspaceDistance(nn.Module):
"""
`Representation Subspace Distance (ICML 2021) <http://ise.thss.tsinghua.edu.cn/~mlong/doc/Representation-Subspace-Distance-for-Domain-Adaptation-Regression-icml21.pdf>`_
Args:
trade_off (float): The trade-off value between Representation Subspace Distance
and Base Mismatch Penalization. Default: 0.1
Inputs:
- f_s (tensor): feature representations on source domain, :math:`f^s`
- f_t (tensor): feature representations on target domain, :math:`f^t`
"""
def __init__(self, trade_off=0.1):
super(RepresentationSubspaceDistance, self).__init__()
self.trade_off = trade_off
def forward(self, f_s, f_t):
U_s, _, _ = torch.svd(f_s.t())
U_t, _, _ = torch.svd(f_t.t())
P_s, cosine, P_t = torch.svd(torch.mm(U_s.t(), U_t))
sine = torch.sqrt(1 - torch.pow(cosine, 2))
rsd = torch.norm(sine, 1) # Representation Subspace Distance
bmp = torch.norm(torch.abs(P_s) - torch.abs(P_t), 2) # Base Mismatch Penalization
return rsd + self.trade_off * bmp