Source code for dalib.modules.grl
"""
@author: Junguang Jiang
@contact: JiangJunguang1123@outlook.com
"""
from typing import Optional, Any, Tuple
import numpy as np
import torch.nn as nn
from torch.autograd import Function
import torch
class GradientReverseFunction(Function):
@staticmethod
def forward(ctx: Any, input: torch.Tensor, coeff: Optional[float] = 1.) -> torch.Tensor:
ctx.coeff = coeff
output = input * 1.0
return output
@staticmethod
def backward(ctx: Any, grad_output: torch.Tensor) -> Tuple[torch.Tensor, Any]:
return grad_output.neg() * ctx.coeff, None
class GradientReverseLayer(nn.Module):
def __init__(self):
super(GradientReverseLayer, self).__init__()
def forward(self, *input):
return GradientReverseFunction.apply(*input)
[docs]class WarmStartGradientReverseLayer(nn.Module):
"""Gradient Reverse Layer :math:`\mathcal{R}(x)` with warm start
The forward and backward behaviours are:
.. math::
\mathcal{R}(x) = x,
\dfrac{ d\mathcal{R}} {dx} = - \lambda I.
:math:`\lambda` is initiated at :math:`lo` and is gradually changed to :math:`hi` using the following schedule:
.. math::
\lambda = \dfrac{2(hi-lo)}{1+\exp(- α \dfrac{i}{N})} - (hi-lo) + lo
where :math:`i` is the iteration step.
Args:
alpha (float, optional): :math:`α`. Default: 1.0
lo (float, optional): Initial value of :math:`\lambda`. Default: 0.0
hi (float, optional): Final value of :math:`\lambda`. Default: 1.0
max_iters (int, optional): :math:`N`. Default: 1000
auto_step (bool, optional): If True, increase :math:`i` each time `forward` is called.
Otherwise use function `step` to increase :math:`i`. Default: False
"""
def __init__(self, alpha: Optional[float] = 1.0, lo: Optional[float] = 0.0, hi: Optional[float] = 1.,
max_iters: Optional[int] = 1000., auto_step: Optional[bool] = False):
super(WarmStartGradientReverseLayer, self).__init__()
self.alpha = alpha
self.lo = lo
self.hi = hi
self.iter_num = 0
self.max_iters = max_iters
self.auto_step = auto_step
def forward(self, input: torch.Tensor) -> torch.Tensor:
""""""
coeff = np.float(
2.0 * (self.hi - self.lo) / (1.0 + np.exp(-self.alpha * self.iter_num / self.max_iters))
- (self.hi - self.lo) + self.lo
)
if self.auto_step:
self.step()
return GradientReverseFunction.apply(input, coeff)