Shortcuts

Source code for dalib.modules.grl

"""
@author: Junguang Jiang
@contact: JiangJunguang1123@outlook.com
"""
from typing import Optional, Any, Tuple
import numpy as np
import torch.nn as nn
from torch.autograd import Function
import torch


class GradientReverseFunction(Function):

    @staticmethod
    def forward(ctx: Any, input: torch.Tensor, coeff: Optional[float] = 1.) -> torch.Tensor:
        ctx.coeff = coeff
        output = input * 1.0
        return output

    @staticmethod
    def backward(ctx: Any, grad_output: torch.Tensor) -> Tuple[torch.Tensor, Any]:
        return grad_output.neg() * ctx.coeff, None


class GradientReverseLayer(nn.Module):
    def __init__(self):
        super(GradientReverseLayer, self).__init__()

    def forward(self, *input):
        return GradientReverseFunction.apply(*input)


[docs]class WarmStartGradientReverseLayer(nn.Module): """Gradient Reverse Layer :math:`\mathcal{R}(x)` with warm start The forward and backward behaviours are: .. math:: \mathcal{R}(x) = x, \dfrac{ d\mathcal{R}} {dx} = - \lambda I. :math:`\lambda` is initiated at :math:`lo` and is gradually changed to :math:`hi` using the following schedule: .. math:: \lambda = \dfrac{2(hi-lo)}{1+\exp(- α \dfrac{i}{N})} - (hi-lo) + lo where :math:`i` is the iteration step. Args: alpha (float, optional): :math:`α`. Default: 1.0 lo (float, optional): Initial value of :math:`\lambda`. Default: 0.0 hi (float, optional): Final value of :math:`\lambda`. Default: 1.0 max_iters (int, optional): :math:`N`. Default: 1000 auto_step (bool, optional): If True, increase :math:`i` each time `forward` is called. Otherwise use function `step` to increase :math:`i`. Default: False """ def __init__(self, alpha: Optional[float] = 1.0, lo: Optional[float] = 0.0, hi: Optional[float] = 1., max_iters: Optional[int] = 1000., auto_step: Optional[bool] = False): super(WarmStartGradientReverseLayer, self).__init__() self.alpha = alpha self.lo = lo self.hi = hi self.iter_num = 0 self.max_iters = max_iters self.auto_step = auto_step def forward(self, input: torch.Tensor) -> torch.Tensor: """""" coeff = np.float( 2.0 * (self.hi - self.lo) / (1.0 + np.exp(-self.alpha * self.iter_num / self.max_iters)) - (self.hi - self.lo) + self.lo ) if self.auto_step: self.step() return GradientReverseFunction.apply(input, coeff)
[docs] def step(self): """Increase iteration number :math:`i` by 1""" self.iter_num += 1

Docs

Access comprehensive documentation for Transfer Learning Library

View Docs

Tutorials

Get started for Transfer Learning Library

Get Started