Source code for dalib.translation.cyclegan.discriminator
"""
Modified from https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix
@author: Junguang Jiang
@contact: JiangJunguang1123@outlook.com
"""
import torch.nn as nn
from torch.nn import init
import functools
from .util import get_norm_layer, init_weights
class NLayerDiscriminator(nn.Module):
"""Construct a PatchGAN discriminator
Args:
input_nc (int): the number of channels in input images.
ndf (int): the number of filters in the last conv layer. Default: 64
n_layers (int): the number of conv layers in the discriminator. Default: 3
norm_layer (torch.nn.Module): normalization layer. Default: :class:`nn.BatchNorm2d`
"""
def __init__(self, input_nc, ndf=64, n_layers=3, norm_layer=nn.BatchNorm2d):
super(NLayerDiscriminator, self).__init__()
if type(norm_layer) == functools.partial: # no need to use bias as BatchNorm2d has affine parameters
use_bias = norm_layer.func == nn.InstanceNorm2d
else:
use_bias = norm_layer == nn.InstanceNorm2d
kw = 4
padw = 1
sequence = [nn.Conv2d(input_nc, ndf, kernel_size=kw, stride=2, padding=padw), nn.LeakyReLU(0.2, True)]
nf_mult = 1
nf_mult_prev = 1
for n in range(1, n_layers): # gradually increase the number of filters
nf_mult_prev = nf_mult
nf_mult = min(2 ** n, 8)
sequence += [
nn.Conv2d(ndf * nf_mult_prev, ndf * nf_mult, kernel_size=kw, stride=2, padding=padw, bias=use_bias),
norm_layer(ndf * nf_mult),
nn.LeakyReLU(0.2, True)
]
nf_mult_prev = nf_mult
nf_mult = min(2 ** n_layers, 8)
sequence += [
nn.Conv2d(ndf * nf_mult_prev, ndf * nf_mult, kernel_size=kw, stride=1, padding=padw, bias=use_bias),
norm_layer(ndf * nf_mult),
nn.LeakyReLU(0.2, True)
]
sequence += [nn.Conv2d(ndf * nf_mult, 1, kernel_size=kw, stride=1, padding=padw)] # output 1 channel prediction map
self.model = nn.Sequential(*sequence)
def forward(self, input):
return self.model(input)
class PixelDiscriminator(nn.Module):
"""Construct a 1x1 PatchGAN discriminator (pixelGAN)
Args:
input_nc (int): the number of channels in input images.
ndf (int): the number of filters in the last conv layer. Default: 64
norm_layer (torch.nn.Module): normalization layer. Default: :class:`nn.BatchNorm2d`
"""
def __init__(self, input_nc, ndf=64, norm_layer=nn.BatchNorm2d):
super(PixelDiscriminator, self).__init__()
if type(norm_layer) == functools.partial: # no need to use bias as BatchNorm2d has affine parameters
use_bias = norm_layer.func == nn.InstanceNorm2d
else:
use_bias = norm_layer == nn.InstanceNorm2d
self.net = [
nn.Conv2d(input_nc, ndf, kernel_size=1, stride=1, padding=0),
nn.LeakyReLU(0.2, True),
nn.Conv2d(ndf, ndf * 2, kernel_size=1, stride=1, padding=0, bias=use_bias),
norm_layer(ndf * 2),
nn.LeakyReLU(0.2, True),
nn.Conv2d(ndf * 2, 1, kernel_size=1, stride=1, padding=0, bias=use_bias)]
self.net = nn.Sequential(*self.net)
def forward(self, input):
return self.net(input)
[docs]def patch(ndf, input_nc=3, norm='batch', n_layers=3, init_type='normal', init_gain=0.02):
"""
PatchGAN classifier described in the original pix2pix paper.
It can classify whether 70×70 overlapping patches are real or fake.
Such a patch-level discriminator architecture has fewer parameters
than a full-image discriminator and can work on arbitrarily-sized images
in a fully convolutional fashion.
Args:
ndf (int): the number of filters in the first conv layer
input_nc (int): the number of channels in input images. Default: 3
norm (str): the type of normalization layers used in the network. Default: 'batch'
n_layers (int): the number of conv layers in the discriminator. Default: 3
init_type (str): the name of the initialization method. Choices includes: ``normal`` |
``xavier`` | ``kaiming`` | ``orthogonal``. Default: 'normal'
init_gain (float): scaling factor for normal, xavier and orthogonal. Default: 0.02
"""
norm_layer = get_norm_layer(norm_type=norm)
net = NLayerDiscriminator(input_nc, ndf, n_layers=n_layers, norm_layer=norm_layer)
init_weights(net, init_type, init_gain=init_gain)
return net
[docs]def pixel(ndf, input_nc=3, norm='batch', init_type='normal', init_gain=0.02):
"""
1x1 PixelGAN discriminator can classify whether a pixel is real or not.
It encourages greater color diversity but has no effect on spatial statistics.
Args:
ndf (int): the number of filters in the first conv layer
input_nc (int): the number of channels in input images. Default: 3
norm (str): the type of normalization layers used in the network. Default: 'batch'
init_type (str): the name of the initialization method. Choices includes: ``normal`` |
``xavier`` | ``kaiming`` | ``orthogonal``. Default: 'normal'
init_gain (float): scaling factor for normal, xavier and orthogonal. Default: 0.02
"""
norm_layer = get_norm_layer(norm_type=norm)
net = PixelDiscriminator(input_nc, ndf, norm_layer=norm_layer)
init_weights(net, init_type, init_gain=init_gain)
return net