Shortcuts

Source code for dglib.generalization.mixstyle.models.mixstyle

"""
Modified from https://github.com/KaiyangZhou/mixstyle-release
@author: Baixu Chen
@contact: cbx_99_hasta@outlook.com
"""
import random
import torch
import torch.nn as nn


[docs]class MixStyle(nn.Module): r"""MixStyle module from `DOMAIN GENERALIZATION WITH MIXSTYLE (ICLR 2021) <https://arxiv.org/pdf/2104.02008v1.pdf>`_. Given input :math:`x`, we first compute mean :math:`\mu(x)` and standard deviation :math:`\sigma(x)` across spatial dimension. Then we permute :math:`x` and get :math:`\tilde{x}`, corresponding mean :math:`\mu(\tilde{x})` and standard deviation :math:`\sigma(\tilde{x})`. `MixUp` is performed using mean and standard deviation .. math:: \gamma_{mix} = \lambda\sigma(x) + (1-\lambda)\sigma(\tilde{x}) .. math:: \beta_{mix} = \lambda\mu(x) + (1-\lambda)\mu(\tilde{x}) where :math:`\lambda` is instance-wise weight sampled from `Beta distribution`. MixStyle is then .. math:: MixStyle(x) = \gamma_{mix}\frac{x-\mu(x)}{\sigma(x)} + \beta_{mix} Args: p (float): probability of using MixStyle. alpha (float): parameter of the `Beta distribution`. eps (float): scaling parameter to avoid numerical issues. """ def __init__(self, p=0.5, alpha=0.1, eps=1e-6): super().__init__() self.p = p self.beta = torch.distributions.Beta(alpha, alpha) self.eps = eps self.alpha = alpha def forward(self, x): if not self.training: return x if random.random() > self.p: return x batch_size = x.size(0) mu = x.mean(dim=[2, 3], keepdim=True) var = x.var(dim=[2, 3], keepdim=True) sigma = (var + self.eps).sqrt() mu, sigma = mu.detach(), sigma.detach() x_normed = (x - mu) / sigma interpolation = self.beta.sample((batch_size, 1, 1, 1)) interpolation = interpolation.to(x.device) # split into two halves and swap the order perm = torch.arange(batch_size - 1, -1, -1) # inverse index perm_b, perm_a = perm.chunk(2) perm_b = perm_b[torch.randperm(batch_size // 2)] perm_a = perm_a[torch.randperm(batch_size // 2)] perm = torch.cat([perm_b, perm_a], 0) mu_perm, sigma_perm = mu[perm], sigma[perm] mu_mix = mu * interpolation + mu_perm * (1 - interpolation) sigma_mix = sigma * interpolation + sigma_perm * (1 - interpolation) return x_normed * sigma_mix + mu_mix

Docs

Access comprehensive documentation for Transfer Learning Library

View Docs

Tutorials

Get started for Transfer Learning Library

Get Started